In this article, we aim to study the stability and dynamic transition of an electrically conducting fluid in the presence of an external uniform horizontal magnetic field and a rotation based on a Boussinesq approximation model. We take a hybrid approach combining theoretical analysis with numerical computation to study the transition from a simple real eigenvalue, a pair of complex conjugate eigenvalues and a pair of real eigenvalues. The center manifold reduction theory is applied to reduce the infinite dimensional system to the corresponding finite dimensional one together with several non-dimensional transition numbers that determine the dynamic transition types. Careful numerical computations are performed to determine these transition numbers as well as related temporal and flow patterns etc. Our results indicate that both transition of continuous type and transition of jump type can occur at certain parameter region. For the continuous transition from a simple real eigenvalue, the Boussinesq approximation model bifurcates to two nontrivial stable steady-state solutions. For the continuous transition from a pair of complex conjugate eigenvalues, the model bifurcates to a stable periodic solutions. For the continuous transition from a pair of real eigenvalues, the model bifurcates to a local attractor at the critical Rayleigh number. The local attractor contains two (four) stable nodes and two (four) saddle points.
翻译:在本篇文章中,我们的目标是研究在外部统一的水平磁场和Boussinesq近似模型基础上的旋转模式下进行电流流的稳定性和动态转换。我们采取混合方法,将理论分析与数字计算结合起来,研究从简单真实的egenval值、一对复杂的同源元值和一对真实的egenval值的过渡过程。中位多重减少理论用于将无限的维度系统减少到相应的有限维度系统,同时使用若干非维度的转换数字,确定动态的过渡类型。我们进行了仔细的数字计算,以确定这些过渡数字以及相关的时间和流模式等。我们的结果表明,连续类型的转变和跳动类型的过渡可以在某些参数区域发生。对于从简单真实的egenval值、一对复杂的同源值和一对真实的平衡模型进行持续转变,将Bussinesinq近端模型用于两种非三维稳定的稳定稳定稳定状态的解决方案。对于从一组复杂的同源值、模型双向稳定的周期解决方案的连续过渡。对于从一对真实的、两双级的吸引性模型来说,将固定的双级(固定的双级、固定的双级、固定的双级、固定的双级) 。