In this paper we provide stability results for algebraic neural networks (AlgNNs) based on non commutative algebras. AlgNNs are stacked layered structures with each layer associated to an algebraic signal model (ASM) determined by an algebra, a vector space, and a homomorphism. Signals are modeled as elements of the vector space, filters are elements in the algebra, while the homomorphism provides a realization of the filters as concrete operators. We study the stability of the algebraic filters in non commutative algebras to perturbations on the homomorphisms, and we provide conditions under which stability is guaranteed. We show that the commutativity between shift operators and between shifts and perturbations does not affect the property of an architecture of being stable. This provides an answer to the question of whether shift invariance was a necessary attribute of convolutional architectures to guarantee stability. Additionally, we show that although the frequency responses of filters in non commutative algebras exhibit substantial differences with respect to filters in commutative algebras, their derivatives for stable filters have a similar behavior.


翻译:在本文中,我们提供了基于非通俗代数的代谢神经网络(ALGNNS)的稳定性结果。 ALGNNS是由代数、矢量空间和同质性决定的代数信号模型( ASM) 所决定的每个层相联的堆叠层结构。 信号是作为矢量空间的元素建模的, 过滤器是代数中的元素, 而同质体则提供了过滤器作为混凝土操作器的实现。 我们研究了非通俗代数中的代数过滤器对同质形态的扰动作用的稳定性,我们提供了稳定性得到保障的条件。 我们表明, 移动操作器之间以及移动器与扰动和扰动之间的相互通性不会影响稳定结构的属性。 这回答了变异性是否是革命性结构的一个必要属性以确保稳定性的问题。 此外, 我们表明,尽管非通性代数代数代数结构中过滤器的频率反应在过滤器方面有着类似的差异。 我们表明,在通俗代谢性代谢器中,它们的稳定代谢器的频率表现了类似的行为。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
31+阅读 · 2021年6月12日
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
45+阅读 · 2020年9月28日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
19+阅读 · 2020年7月13日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Graph Analysis and Graph Pooling in the Spatial Domain
Arxiv
19+阅读 · 2018年6月27日
Arxiv
3+阅读 · 2018年2月11日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
13+阅读 · 2021年5月25日
Arxiv
19+阅读 · 2020年7月13日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Graph Analysis and Graph Pooling in the Spatial Domain
Arxiv
19+阅读 · 2018年6月27日
Arxiv
3+阅读 · 2018年2月11日
Top
微信扫码咨询专知VIP会员