Graph contrastive learning (GCL) has attracted a surge of attention due to its superior performance for learning node/graph representations without labels. However, in practice, unlabeled nodes for the given graph usually follow an implicit imbalanced class distribution, where the majority of nodes belong to a small fraction of classes (a.k.a., head class) and the rest classes occupy only a few samples (a.k.a., tail classes). This highly imbalanced class distribution inevitably deteriorates the quality of learned node representations in GCL. Indeed, we empirically find that most state-of-the-art GCL methods exhibit poor performance on imbalanced node classification. Motivated by this observation, we propose a principled GCL framework on Imbalanced node classification (ImGCL), which automatically and adaptively balances the representation learned from GCL without knowing the labels. Our main inspiration is drawn from the recent progressively balanced sampling (PBS) method in the computer vision domain. We first introduce online clustering based PBS, which balances the training sets based on pseudo-labels obtained from learned representations. We then develop the node centrality based PBS method to better preserve the intrinsic structure of graphs, which highlight the important nodes of the given graph. Besides, we theoretically consolidate our method by proving that the classifier learned by balanced sampling without labels on an imbalanced dataset can converge to the optimal balanced classifier with a linear rate. Extensive experiments on multiple imbalanced graph datasets and imbalance settings verify the effectiveness of our proposed framework, which significantly improves the performance of the recent state-of-the-art GCL methods. Further experimental ablations and analysis show that the ImGCL framework remarkably improves the representations of nodes in tail classes.


翻译:对比图形学习(GCL) 因其在学习节点/没有标签的演示中表现优异,吸引了人们的注意。然而,在实践中,对给定图表的未贴标签的节点通常遵循隐含的不平衡类分布,大多数节点属于一小部分类(a.k.a.a.,头类),而其余类只使用少数样本(a.k.a.a.,尾类)。这种高度不平衡的分类分配不可避免地使GCL中学习的节点表述质量恶化。事实上,我们从经验中发现,大多数最先进的GCL方法在不平衡的节点分类中表现不平衡。受此观察的驱使,我们提议了一个关于Imm平衡节点分类分类(IMGCL)的有原则的GCL框架。我们的主要灵感来自计算机视野域最近逐渐平衡的取样方法。我们首先引入基于PBSBS的在线组合,它平衡了从所学的假标签中获取的多级点计算结果。我们随后提出一个关于Imallialal-lialalalal dal deal deal dismal deal deal deal dal dal deal dal dal drodu,我们通过不甚甚甚甚甚甚甚甚甚甚地将Glegleglegal 。

0
下载
关闭预览

相关内容

节点分类任务是一种算法,其必须通过查看其邻居的标签来确定样本(表示为节点)的标签。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
42+阅读 · 2020年12月18日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
42+阅读 · 2020年12月18日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员