Abstraction is a commonly used process to represent some low-level system by a more coarse specification with the goal to omit unnecessary details while preserving important aspects. While recent work on abstraction in the situation calculus has focused on non-probabilistic domains, we describe an approach to abstraction of probabilistic and dynamic systems. Based on a variant of the situation calculus with probabilistic belief, we define a notion of bisimulation that allows to abstract a detailed probabilistic basic action theory with noisy actuators and sensors by a possibly non-stochastic basic action theory. By doing so, we obtain abstract Golog programs that omit unnecessary details and which can be translated back to a detailed program for actual execution. This simplifies the implementation of noisy robot programs, opens up the possibility of using non-stochastic reasoning methods (e.g., planning) on probabilistic problems, and provides domain descriptions that are more easily understandable and explainable.
翻译:抽象化是一个常用的过程,它代表了某些低层次的系统,用更粗糙的规格,目的是省略不必要的细节,同时保留重要的方面。虽然最近有关情况微积分的抽象工作侧重于非概率领域,但我们描述了一种抽象的概率和动态系统的方法。根据一种具有概率信念的情况微积分变体,我们定义了一种平衡概念,它允许用一种可能非随机化的基本行动理论来抽象出一个详细的概率基本行动理论,用一种可能非随机化的基本行动理论来抽象地描述振动器和传感器。通过这样做,我们获得了抽象的Golog程序,它省略了不必要的细节,可以被翻译成一个详细的实际执行程序。这简化了噪音机器人程序的实施,开辟了在概率问题上使用非随机推理方法(例如规划)的可能性,提供了更容易理解和解释的域描述。</s>