Short-term forecasting of solar photovoltaic energy (PV) production is important for powerplant management. Ideally these forecasts are equipped with error bars, so that downstream decisions can account for uncertainty. To produce predictions with error bars in this setting, we consider Gaussian processes (GPs) for modelling and predicting solar photovoltaic energy production in the UK. A standard application of GP regression on the PV timeseries data is infeasible due to the large data size and non-Gaussianity of PV readings. However, this is made possible by leveraging recent advances in scalable GP inference, in particular, by using the state-space form of GPs, combined with modern variational inference techniques. The resulting model is not only scalable to large datasets but can also handle continuous data streams via Kalman filtering.
翻译:对太阳能光伏发电的短期预测对电动植物管理十分重要。 理想的情况是,这些预测配有误差条,以便下游的决定能够说明不确定性。 为了在这一环境下作出带有误差条的预测,我们认为英国在模拟和预测太阳能光伏能源生产方面采用高森进程(GPs ) 。 在光伏发电时间序列数据上采用GP回归的标准应用是行不通的,因为光伏发电读数的数据大小巨大,而且非Gaussian性。然而,通过利用可缩放的GP推算的最新进展,特别是利用GPs的状态-空间形式,加上现代变异推论技术,这成为可能。 由此形成的模型不仅可以对大型数据集进行缩放,而且能够通过Kalman过滤处理连续的数据流。