In social science research, understanding latent structures in populations through survey data with categorical responses is a common and important task. Traditional methods like Factor Analysis and Latent Class Analysis have limitations, particularly in handling categorical data and accommodating mixed memberships in latent structures, respectively. Moreover, choosing the number of factors or latent classes is often subjective and can be challenging in the presence of missing values. This study introduces a Hierarchical Dirichlet Process Mixture of Products of Multinomial Distributions (HDPMPM) model, which leverages the flexibility of nonparametric Bayesian methods to address these limitations. The HDPMPM model allows for multiple latent classes within individuals and avoids fixing the number of mixture components at an arbitrary number. Additionally, it incorporates missing data imputation directly into the model's Gibbs sampling process. By applying a truncated stick-breaking representation of the Dirichlet process, we can derive a Gibbs sampling scheme for posterior inference. An application of the HDPMPM model to the 2016 American National Election Study (ANES) data demonstrates its effectiveness in identifying political profiles and handling missing data scenarios, including those that are missing at random (MAR) and missing completely at random (MCAR). The results show that the HDPMPM model successfully recovers dominant profiles and manages complex latent structures in survey data, providing an alternative tool for social science researchers in dealing with categorical data with missing values.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员