The $\alpha$-$\eta$-$\kappa$-$\mu$ is one of the most generalized and flexible channel models having an excellent fit to experimental data from diverse propagation environments. The existing statistical results on the envelope of $\alpha$-$\eta$-$\kappa$-$\mu$ model contain an infinite series involving regularized hypergeometric function and generalized Laguerre polynomial, prohibiting its widespread application in the performance analysis of wireless systems. In this paper, we employ a novel approach to derive density and distribution functions of the envelope of the $\alpha$-$\eta$-$\kappa$-$\mu$ fading channel without an infinite series approximation. The derived statistical results are presented using a single Fox's H-function for tractable performance analysis and efficient numerical computations, especially for high-frequency mmWave and terahertz wireless transmissions. To gain insight into the distribution of channel envelope, we develop an asymptotic analysis using a more straightforward Gamma function converging to the exact within a reasonable range of channel parameters. To further substantiate the proposed analysis, we present the exact outage probability and average bit-error-rate (BER) performance of a wireless link subjected to the $\alpha$-$\eta$-$\kappa$-$\mu$ fading model using a single tri-variate Fox's H-function. We obtain the diversity order of the system by analyzing the outage probability at a high signal-to-noise (SNR) ratio. We use numerical and simulation analysis to demonstrate the significance of the developed statistical results compared with the existing infinite series representation for the envelope of the $\alpha$-$\eta$-$\kappa$-$\mu$ model.
翻译:美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元( 美元) 最广泛和最灵活的频道模型之一, 与不同传播环境的实验数据非常相适应。 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元( 美元) 封套上的现有统计结果包含一个无限系列, 涉及常规超视量函数和通用超光速多线传输, 禁止其在无线系统性能分析中广泛应用。 在本文中, 我们采用了一种新颖的方法, 以更直接的 Gamma 函数( 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 信号- 美元( 美元- 美元- 美元- 数字- 数据- 数据- 数据- 数据- 数据- 数据- 数据- 数据- 数据- 数据- 数据- 数据- 数据- 数据- 数据- 数据分析