State-of-the-art face recognition (FR) approaches have shown remarkable results in predicting whether two faces belong to the same identity, yielding accuracies between 92% and 100% depending on the difficulty of the protocol. However, the accuracy drops substantially when exposed to morphed faces, specifically generated to look similar to two identities. To generate morphed faces, we integrate a simple pretrained FR model into a generative adversarial network (GAN) and modify several loss functions for face morphing. In contrast to previous works, our approach and analyses are not limited to pairs of frontal faces with the same ethnicity and gender. Our qualitative and quantitative results affirm that our approach achieves a seamless change between two faces even in unconstrained scenarios. Despite using features from a simpler FR model for face morphing, we demonstrate that even recent FR systems struggle to distinguish the morphed face from both identities obtaining an accuracy of only 55-70%. Besides, we provide further insights into how knowing the FR system makes it particularly vulnerable to face morphing attacks.
翻译:最先进的面部识别( FR) 方法在预测两张面部是否属于同一身份方面显示出显著效果, 产生92%至100%的接受率取决于协议的难度。 然而, 当暴露于变形面部时, 准确性会大幅下降, 具体地说, 产生与两种身份相似的特征。 为了产生变形面部, 我们将一个简单的先入为主的 FR 模型纳入一个基因化对抗网络( GAN), 并修改面部变形的若干损失功能。 与以往的工作不同, 我们的方法和分析并不局限于具有相同族裔和性别的正面面部面部脸部。 我们的质量和数量结果证实, 我们的方法在两种面部之间, 即使在不受限制的情况下, 也实现了无缝无缝的改变。 尽管我们使用简便的 FR 模型来进行面部变形, 我们证明即使是最近的 FR 系统也努力将变形脸部与两种身份区分, 也只有55- 70 % 。 此外, 我们更深入地了解FR 系统如何使其特别容易面对变形攻击。