The problem of scheduling jobs and choosing their respective speeds with multiple servers under a sum power constraint to minimize the flow time + energy is considered. This problem is a generalization of the flow time minimization problem with multiple unit-speed servers, when jobs can be parallelized, however, with a sub-linear, concave speedup function $k^{1/\alpha}, \alpha>1$ when allocated $k$ servers, i.e., jobs experience diminishing returns from being allocated additional servers. When all jobs are available at time $0$, we show that a very simple algorithm EQUI, that processes all available jobs at the same speed is $\left(2-\frac{1}{\alpha}\right) \frac{2}{\left(1-\left(\frac{1}{\alpha}\right)\right)}$-competitive, while in the general case, when jobs arrive over time, an LCFS based algorithm is shown to have a constant (dependent only on $\alpha$) competitive ratio.


翻译:考虑的问题是在总功率限制下,以多个服务器安排工作和选择各自的速度,以最大限度地减少流动时间+能量。这是一个与多个单位速度服务器的流程时间最小化问题的一般化问题,然而,当工作可以与一个子线性、 conccave 加速功能 $k ⁇ 1/\ alpha}, 当分配到 $k$ 服务器时, ALpha> 1$, 即工作经历减少从分配到额外服务器的回报。 当所有工作都可用时 $0 美元时, 我们显示一个非常简单的 EQUI 算法, 以相同速度处理所有可用的工作都是 $\left (2-\ frac{ 1\\ fraft (left)\ free (\ frac{ 1\\\\\\\\\\ alpha\\\right) 具有竞争力的 。 在一般情况下, 以 LCFS算法为基础的算法显示, 常数( 只取决于$\ alpha$) 竞争比率 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
6+阅读 · 2021年6月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员