Traditional recommendation systems mainly focus on modeling user interests. However, the dynamics of recommended items caused by attribute modifications (e.g. changes in prices) are also of great importance in real systems, especially in the fast-growing e-commerce environment, which may cause the users' demands to emerge, shift and disappear. Recent studies that make efforts on dynamic item representations treat the item attributes as side information but ignore its temporal dependency, or model the item evolution with a sequence of related users but do not consider item attributes. In this paper, we propose Core Attribute Evolution Network (CAEN), which partitions the user sequence according to the attribute value and thus models the item evolution over attribute dynamics with these users. Under this framework, we further devise a hierarchical attention mechanism that applies attribute-aware attention for user aggregation under each attribute, as well as personalized attention for activating similar users in assessing the matching degree between target user and item. Results from the extensive experiments over actual e-commerce datasets show that our approach outperforms the state-of-art methods and achieves significant improvements on the items with rapid changes over attributes, therefore helping the item recommendation to adapt to the growth of the e-commerce platform.
翻译:传统建议系统主要侧重于用户兴趣的建模。然而,由于属性改变(如价格变化)而导致的建议项目动态在实际系统中也非常重要,特别是在快速增长的电子商务环境中,这可能导致用户的需求出现、转移和消失。最近关于动态项目表述的努力将项目属性视为侧面信息,但忽视其时间依赖性,或以相关用户的顺序作为项目演变的模型,但不考虑项目属性属性。在本文件中,我们提议核心属性演变网络(CAEN),根据属性值对用户序列进行分割,从而对项目相对于这些用户的属性动态的演变进行模型。在这个框架内,我们进一步设计一个分级关注机制,对每个属性下的用户集合应用属性意识关注,并对启动类似用户评估目标用户与项目之间的对应程度进行个性化关注。对实际电子商务数据集的广泛实验结果表明,我们的方法超越了最新方法,在属性上实现了显著改进,从而帮助项目建议适应电子商务平台的增长。