Classical AI planners provide solutions to planning problems in the form of long and opaque text outputs. To aid in the understanding transferability of planning solutions, it is necessary to have a rich and comprehensible representation for both human and computers beyond the current line-by-line text notation. In particular, it is desirable to encode the trace of literals throughout the plan to capture the dependencies between actions selected. The approach of this paper is to view the actions as maps between literals and the selected plan as a composition of those maps. The mathematical theory, called category theory, provides the relevant structures for capturing maps, their compositions, and maps between compositions. We employ this theory to propose an algorithm agnostic, model-based representation for domains, problems, and plans expressed in the commonly used planning description language, PDDL. This category theoretic representation is accompanied by a graphical syntax in addition to a linear notation, similar to algebraic expressions, that can be used to infer literals used at every step of the plan. This provides the appropriate constructive abstraction and facilitates comprehension for human operators. In this paper, we demonstrate this on a plan within the Blocksworld domain.


翻译:典型的AI规划者以长期和不透明的文本输出形式为规划问题提供解决办法。为了帮助理解规划解决办法的可转移性,有必要使人和计算机在目前的逐行文本符号之外有一个丰富和可理解的表述方式。特别是,有必要在整个计划中对字典的痕量进行编码,以捕捉所选择的行动之间的依赖性。本文件的方法是将行动视为文字和选定计划之间的地图,作为这些地图的构成。数学理论称为分类理论,为地图、其构成和组成之间地图的捕获提供了相关结构。我们利用这一理论为通用的规划描述语言PDDL所表述的领域、问题和计划提出一种算法、基于模型的表述方式。这一类别除了可以用来推断计划每个步骤使用的直线性标语外,还配有图形语句。这为人类操作者提供了适当的建设性抽象信息,便于理解。在本文中,我们展示了本域域域内的图。

0
下载
关闭预览

相关内容

【2020新书】Python文本分析,104页pdf
专知会员服务
98+阅读 · 2020年12月23日
【硬核书】群论,Group Theory,135页pdf
专知会员服务
125+阅读 · 2020年6月25日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
4+阅读 · 2021年4月13日
Arxiv
5+阅读 · 2021年2月8日
VIP会员
相关VIP内容
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员