Quantum Computing (QC) is transitioning from theoretical frameworks to an indispensable powerhouse of computational capability, resulting in extensive adoption across both industrial and academic domains. QC presents exceptional advantages, including unparalleled processing speed and the potential to solve complex problems beyond the capabilities of classical computers. Nevertheless, academic researchers and industry practitioners encounter various challenges in harnessing the benefits of this technology. The limited accessibility of QC resources for classical developers, and a general lack of domain knowledge and expertise, represent insurmountable barrier, hence to address these challenges, we introduce a framework- Quantum Computing as a Service for Hybrid Classical-Quantum Software Development (QCSHQD), which leverages service-oriented strategies. Our framework comprises three principal components: an Integrated Development Environment (IDE) for user interaction, an abstraction layer dedicated to orchestrating quantum services, and a service provider responsible for executing services on quantum computer. This study presents a blueprint for QCSHQD, designed to democratize access to QC resources for classical developers who want to seamless harness QC power. The vision of QCSHQD paves the way for groundbreaking innovations by addressing key challenges of hybridization between classical and quantum computers.
翻译:暂无翻译