Gaussian linear models with random group-level effects are the standard for modeling randomized experiments carried out over groups, such as locations, farms, hospitals, or schools. Group-level effects can be summarized by prediction intervals for group-level means or responses, but the quality of such summaries depends on whether the intervals are valid in the sense they attain their nominal coverage probability. Many methods for constructing prediction intervals are available -- such as Student's t, bootstrap, and Bayesian methods -- but none of these are guaranteed to be valid, and indeed are not valid over a range of simulation examples. We propose a new method for constructing valid predictions of group-level effects based on an inferential model (IM). The proposed prediction intervals have guaranteed finite-sample validity and outperform existing methods in simulation examples. In an on-farm agricultural study the new IM-based prediction intervals suggest a higher level of uncertainty in farm-specific effects compared to the standard Student's t-based intervals, which are known to undercover.
翻译:具有随机群体效应的高斯线性模型是按地点、农场、医院或学校等群体进行随机实验的模型标准。小组一级效应可以通过群体一级手段或反应的预测间隔进行总结,但这种摘要的质量取决于这些间隔是否有效,因为它们达到其名义覆盖率的概率。许多预测间隔的构建方法 -- -- 如学生的T、靴套和巴耶斯方法 -- -- 但其中没有任何一种方法保证是有效的,而且实际上对一系列模拟例子来说是无效的。我们提出了一个新方法,用以根据推断模型(IM)来构建对群体一级效应的有效预测。拟议的预测间隔保证了有限抽样的有效性,并超越了模拟实例中的现有方法。在一项农业研究中,基于IM的新的预测间隔表明,农场特定效应的不确定性高于已知的标准学生的基于基准间隔,而后者是秘密的。