High-precision cellular-based localization is one of the key technologies for next-generation communication systems. In this paper, we investigate the potential of applying machine learning (ML) to a massive multiple-input multiple-output (MIMO) system to enhance localization accuracy. We analyze a new ML-based localization pipeline that has two parallel fully connected neural networks (FCNN). The first FCNN takes the instantaneous spatial covariance matrix to capture angular information, while the second FCNN takes the channel impulse responses to capture delay information. We fuse the estimated coordinates of these two FCNNs for further accuracy improvement. To test the localization algorithm, we performed an indoor measurement campaign with a massive MIMO testbed at 3.7GHz. In the measured scenario, the proposed pipeline can achieve centimeter-level accuracy by combining delay and angular information.
翻译:高精密细胞定位是下一代通信系统的关键技术之一。在本文中,我们调查了将机器学习(ML)应用于大规模多投入多输出(MIMO)系统以提高本地化准确性的可能性。我们分析了一个新的基于ML的本地化管道,该管道有两个平行的完全连接神经网络(FCNN),第一个FCNN采用瞬时空间变量矩阵来捕捉三角信息,而第二个FCNN则采用频道脉冲反应来捕捉延迟信息。我们结合了这两个FCNN的估计坐标,以进一步提高本地化算法。为了测试本地化算法,我们进行了室内测量活动,在3.7GHz有一个大型IMIMO测试台。在测量的假设中,拟议的管道可以通过将延迟和角信息结合起来,达到厘米级的精确度。</s>