Neural implicit functions have emerged as a powerful representation for surfaces in 3D. Such a function can encode a high quality surface with intricate details into the parameters of a deep neural network. However, optimizing for the parameters for accurate and robust reconstructions remains a challenge, especially when the input data is noisy or incomplete. In this work, we develop a hybrid neural surface representation that allows us to impose geometry-aware sampling and regularization, which significantly improves the fidelity of reconstructions. We propose to use \emph{iso-points} as an explicit representation for a neural implicit function. These points are computed and updated on-the-fly during training to capture important geometric features and impose geometric constraints on the optimization. We demonstrate that our method can be adopted to improve state-of-the-art techniques for reconstructing neural implicit surfaces from multi-view images or point clouds. Quantitative and qualitative evaluations show that, compared with existing sampling and optimization methods, our approach allows faster convergence, better generalization, and accurate recovery of details and topology.
翻译:3D 中表面的强力隐含功能已经形成为3D 中表面的强大代表。 这样的功能可以在深神经网络的参数中将高品质表面和复杂细节编码成一个精密的细节。 但是,优化精确和稳健重建的参数仍是一个挑战, 特别是当输入数据过于吵闹或不完整时。 在这项工作中, 我们开发了混合神经表面代表, 使我们能够强制进行几何觉抽样和正规化, 从而大大改善重建的忠诚性。 我们提议使用 emph{ iso-points} 作为神经隐含功能的明确代表。 这些点在培训中进行计算和更新, 以捕捉重要的几何特征, 并对优化工作施加几何限制。 我们证明, 我们的方法可以改进从多视图像或点云中重建神经隐性表面的先进技术。 定量和定性评估显示, 与现有的取样和优化方法相比, 我们的方法可以更快地整合、 更概括和准确地恢复细节和地形。