Inferring representations of 3D scenes from 2D observations is a fundamental problem of computer graphics, computer vision, and artificial intelligence. Emerging 3D-structured neural scene representations are a promising approach to 3D scene understanding. In this work, we propose a novel neural scene representation, Light Field Networks or LFNs, which represent both geometry and appearance of the underlying 3D scene in a 360-degree, four-dimensional light field parameterized via a neural implicit representation. Rendering a ray from an LFN requires only a *single* network evaluation, as opposed to hundreds of evaluations per ray for ray-marching or volumetric based renderers in 3D-structured neural scene representations. In the setting of simple scenes, we leverage meta-learning to learn a prior over LFNs that enables multi-view consistent light field reconstruction from as little as a single image observation. This results in dramatic reductions in time and memory complexity, and enables real-time rendering. The cost of storing a 360-degree light field via an LFN is two orders of magnitude lower than conventional methods such as the Lumigraph. Utilizing the analytical differentiability of neural implicit representations and a novel parameterization of light space, we further demonstrate the extraction of sparse depth maps from LFNs.


翻译:从 2D 观测中推断 3D 显示 3D 场景是计算机图形、计算机视觉和人工智能的一个基本问题。 出现 3D 结构型神经场景展示是3D 场景理解的一个很有希望的方法。 在这项工作中,我们提议一个新的神经场面展示,即光场网络或 LFN,它代表了360度四维光场的几何和基底 3D 场的外观,通过神经隐含代表法进行三D 的四维光场参数。从 LFN 射出一幅射线,只需要一个 *sing* 网络评价,而对于3D 结构型神经场场景展示的光源或量制成器进行数百次评价。在简单场景的设置中,我们利用元化学习来了解一个前的LFNFS 场场景,使多视角一致的场面重建能够从一个很小的单一图像观测中进行,从而大大降低时间和记忆的复杂性,并能够实时显示。 通过 LFNF 储存360 光场域域域域域域域域评价的费用比常规的深度图的深度要低2级,比常规方法要低2级,例如我们深度的深度分析的深度图的深度图。

1
下载
关闭预览

相关内容

【论文推荐】文本摘要简述
专知会员服务
69+阅读 · 2020年7月20日
专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
“CVPR 2020 接受论文列表 1470篇论文都在这了
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年7月27日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
37+阅读 · 2021年2月10日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员