This thesis investigates the application of near-infrared hyperspectral imaging (NIR-HSI) for food quality analysis. The investigation is conducted through four studies operating with five research hypotheses. For several analyses, the studies compare models based on convolutional neural networks (CNNs) and partial least squares (PLS). Generally, joint spatio-spectral analysis with CNNs outperforms spatial analysis with CNNs and spectral analysis with PLS when modeling parameters where chemical and physical visual information are relevant. When modeling chemical parameters with a 2-dimensional (2D) CNN, augmenting the CNN with an initial layer dedicated to performing spectral convolution enhances its predictive performance by learning a spectral preprocessing similar to that applied by domain experts. Still, PLS-based spectral modeling performs equally well for analysis of the mean content of chemical parameters in samples and is the recommended approach. Modeling the spatial distribution of chemical parameters with NIR-HSI is limited by the ability to obtain spatially resolved reference values. Therefore, a study used bulk mean references for chemical map generation of fat content in pork bellies. A PLS-based approach gave non-smooth chemical maps and pixel-wise predictions outside the range of 0-100\%. Conversely, a 2D CNN augmented with a spectral convolution layer mitigated all issues arising with PLS. The final study attempted to model barley's germinative capacity by analyzing NIR spectra, RGB images, and NIR-HSI images. However, the results were inconclusive due to the dataset's low degree of germination. Additionally, this thesis has led to the development of two open-sourced Python packages. The first facilitates fast PLS-based modeling, while the second facilitates very fast cross-validation of PLS and other classical machine learning models with a new algorithm.
翻译:暂无翻译