Characterizing the sensing and communication performance tradeoff in integrated sensing and communication (ISAC) systems is challenging in the applications of learning-based human motion recognition. This is because of the large experimental datasets and the black-box nature of deep neural networks. This paper presents SDP3, a Simulation-Driven Performance Predictor and oPtimizer, which consists of SDP3 data simulator, SDP3 performance predictor and SDP3 performance optimizer. Specifically, the SDP3 data simulator generates vivid wireless sensing datasets in a virtual environment, the SDP3 performance predictor predicts the sensing performance based on the function regression method, and the SDP3 performance optimizer investigates the sensing and communication performance tradeoff analytically. It is shown that the simulated sensing dataset matches the experimental dataset very well in the motion recognition accuracy. By leveraging SDP3, it is found that the achievable region of recognition accuracy and communication throughput consists of a communication saturation zone, a sensing saturation zone, and a communication-sensing adversarial zone, of which the desired balanced performance for ISAC systems lies in the third one.


翻译:在综合遥感和通信系统(ISAC)中,在应用基于学习的人类运动识别方面,在应用基于学习的人类运动的感知和通信性能权衡方面,具有挑战性,这是因为实验数据集庞大,深神经网络具有黑盒性质,本文介绍了SDP3、模拟驱动性性能预测器和OPimizer,由SDP3数据模拟器、SDP3性能预测器和SDP3性能优化器组成。具体来说,SDP3数据模拟器在虚拟环境中生成了生动的无线感应感测数据集,SDP3性能预测器预测了基于功能回归法的感测性能,SDP3性能优化器对感知和通信性能权衡分析进行了调查,显示模拟感测数据集与实验数据集非常符合运动识别准确性。通过利用SDP3发现,可实现的识别准确度和通信性能区域包括通信饱和区、感饱和区和通信感测防御区,而ISAC系统预期的平衡性能处于第三个区域。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员