This paper is concerned with list decoding of $2$-interleaved binary alternant codes. The principle of the proposed algorithm is based on a combination of a list decoding algorithm for (interleaved) Reed-Solomon codes and an algorithm for (non-interleaved) alternant codes. A new upper bound on the decoding radius is derived and the list size is shown to scale polynomially in the code parameters. While it remains an open problem whether this upper bound is achievable, the provided simulation results show that a decoding radius exceeding the binary Johnson radius can be achieved with a high probability of decoding success by the proposed algorithm.
翻译:本文涉及$2美元间断二进制余生代码的解码列表。 提议的算法原则基于一个组合,即( 间断) Reed- Solomon 代码的解码算法列表和( 非间断) 余生代码的算法。 将产生一个新的解码半径上限, 并显示列表大小在代码参数中是多元的。 虽然这个上限是否可行仍然是一个未解决的问题, 但所提供的模拟结果显示,如果提议的算法成功解码的可能性很高, 超过二进制约翰逊半径的解码半径可以实现。