We propose a novel end-to-end curriculum learning approach for sparsely labelled animal datasets leveraging large volumes of unlabelled data to improve supervised species detectors. We exemplify the method in detail on the task of finding great apes in camera trap footage taken in challenging real-world jungle environments. In contrast to previous semi-supervised methods, our approach adjusts learning parameters dynamically over time and gradually improves detection quality by steering training towards virtuous self-reinforcement. To achieve this, we propose integrating pseudo-labelling with curriculum learning policies and show how learning collapse can be avoided. We discuss theoretical arguments, ablations, and significant performance improvements against various state-of-the-art systems when evaluating on the Extended PanAfrican Dataset holding approx. 1.8M frames. We also demonstrate our method can outperform supervised baselines with significant margins on sparse label versions of other animal datasets such as Bees and Snapshot Serengeti. We note that performance advantages are strongest for smaller labelled ratios common in ecological applications. Finally, we show that our approach achieves competitive benchmarks for generic object detection in MS-COCO and PASCAL-VOC indicating wider applicability of the dynamic learning concepts introduced. We publish all relevant source code, network weights, and data access details for full reproducibility. The code is available at https://github.com/youshyee/DCL-Detection.
翻译:我们建议一种新颖的端对端课程学习方法,用于使用大量未贴标签的数据来改进受监督物种探测器,对标签少的动物数据集采用新颖的端对端课程学习方法,利用大量未贴标签的数据来改进受监督物种探测器。我们详细介绍了在挑战现实世界丛林环境中拍摄的摄像陷阱镜头中发现大型猿的任务。与以往的半监督方法不同,我们的方法对学习参数进行了动态调整,通过引导培训走向良性自我加强,逐步提高检测质量。为此,我们建议将假标签与课程学习政策结合起来,并表明如何避免学习崩溃。我们在评估泛非扩展数据集持有约1.8M框架时,讨论理论论点、校准和各种最新技术系统的重大性改进。我们还表明,我们的方法可以超越监督基线,在诸如Bees和Sapshotshall Serengeti等其他动物数据集的稀薄标签版本上有很大的边际。我们注意到,在生态应用中,较小型标签比的通用比率最强。最后,我们表明,我们的方法在MS-COCOCO 和PASAL-VER 数据库中,所有动态数据库的可应用性数据库中,我们可以使用。