We study strategic games on weighted directed graphs, in which the payoff of a player is defined as the sum of the weights on the edges from players who chose the same strategy, augmented by a fixed non-negative integer bonus for picking a given strategy. These games capture the idea of coordination in the absence of globally common strategies. We identify natural classes of graphs for which finite improvement or coalition-improvement paths of polynomial length always exist, and, as a consequence, a (pure) Nash equlibrium or a strong equilibrium can be found in polynomial time. The considered classes of graphs are typical in network topologies: simple cycles correspond to the token ring local area networks, while open chains of simple cycles correspond to multiple independent rings topology from the recommendation G.8032v2 on the Ethernet ring protection switching. For simple cycles these results are optimal in the sense that without the imposed conditions on the weights and bonuses a Nash equilibrium may not even exist. Finally, we prove that the problem of determining the existence of a Nash equilibrium or of a strong equilibrium in these games is NP-complete already for unweighted graphs and with no bonuses assumed. This implies that the same problems for polymatrix games are strongly NP-hard.


翻译:我们在加权定向图表上研究战略游戏,其中将玩家的回报定义为选择同一战略的玩家在边缘的重量之和,并辅之以固定的非负整数整数奖金,以选择特定战略。这些游戏在缺乏全球共同战略的情况下可以捕捉到协调的理念。我们找出了单数长度的有限改进或联盟-改善路径总是存在的自然图表类别,因此,在多元时段中可以找到一个(纯)Nash equlibrium或强平衡。在网络表层中典型的考虑中的图表类别:简单的周期与象征性环局局域网相对应,而简单的周期的开放链则与Ethernet环保护转换建议G.8032v2中的多个独立的环表层相对应。对于简单周期而言,这些结果是最佳的,因为没有规定重量和奖金平衡的附加条件,甚至根本不存在。最后,我们证明确定是否存在纳什平衡或这些游戏中强烈平衡的问题,在网络表层结构中是典型的典型的:简单的周期与象征性的环形区域网络网络网络网络网络网络网络网络网络网络网络网络网络网络网络网络网络网络网络网络网络网络网络网络网络网络网络相对应相对对应相对对应,而开放的链链链则符合多个结构与与从建议G.803v2的多独立的结构结构与Etherld 。对于Ethern-st-stimimmld 的游戏的游戏对不具有强烈性游戏的假设,这种不具有强烈性游戏对等的模拟式游戏的深度问题具有强烈性,这种不具有强烈的假设性。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
53+阅读 · 2020年9月7日
近期必读的6篇AI顶会WWW2020【推荐系统】相关论文
专知会员服务
57+阅读 · 2020年2月25日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
CIKM2020推荐系统论文集合
机器学习与推荐算法
10+阅读 · 2020年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
11+阅读 · 2018年4月25日
Arxiv
3+阅读 · 2018年2月7日
VIP会员
相关资讯
CIKM2020推荐系统论文集合
机器学习与推荐算法
10+阅读 · 2020年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
11+阅读 · 2018年4月25日
Arxiv
3+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员