As the major factors affecting the safety of deep learning models, corner cases and related detection are crucial in AI quality assurance for constructing safety- and security-critical systems. The generic corner case researches involve two interesting topics. One is to enhance DL models robustness to corner case data via the adjustment on parameters/structure. The other is to generate new corner cases for model retraining and improvement. However, the complex architecture and the huge amount of parameters make the robust adjustment of DL models not easy, meanwhile it is not possible to generate all real-world corner cases for DL training. Therefore, this paper proposes to a simple and novel study aiming at corner case data detection via a specific metric. This metric is developed on surprise adequacy (SA) which has advantages on capture data behaviors. Furthermore, targeting at characteristics of corner case data, three modifications on distanced-based SA are developed for classification applications in this paper. Consequently, through the experiment analysis on MNIST data and industrial data, the feasibility and usefulness of the proposed method on corner case data detection are verified.


翻译:由于影响深层学习模型、转角案例和相关检测的安全性的主要因素,影响深层学习模型、转角案例和相关检测的安全性对AI建立安全和安保关键系统的质量保证至关重要。通用转角案例研究涉及两个有趣的议题:一是通过参数/结构的调整加强DL模型的稳健性,通过参数/结构的调整将案件转角数据转角;二是产生新的转角案例,用于模型再培训和改进;然而,复杂的结构和大量的参数使得对DL模型进行稳健的调整不易,同时不可能为DL培训产生所有真实世界转角案例。因此,本文件提议进行一项简单和新的研究,目的是通过具体指标探测转角案例数据。这一指标是针对突如其来的充足性(SA)制定的,具有捕捉数据行为方面的优势。此外,针对转角案例数据的特点,为本文件的分类应用对基于远程的SA进行了三次修改。因此,通过对MNIST的数据和工业数据进行实验分析,核实了拟议中转角案例数据检测方法的可行性和有用性。

0
下载
关闭预览

相关内容

【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
4+阅读 · 2018年10月5日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
4+阅读 · 2018年10月5日
Arxiv
7+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员