Deep neural networks are rapidly emerging as data analysis tools, often outperforming the conventional techniques used in complex microfluidic systems. One fundamental analysis frequently desired in microfluidic experiments is counting and tracking the droplets. Specifically, droplet tracking in dense emulsions is challenging as droplets move in tightly packed configurations. Sometimes the individual droplets in these dense clusters are hard to resolve, even for a human observer. Here, two deep learning-based cutting-edge algorithms for object detection (YOLO) and object tracking (DeepSORT) are combined into a single image analysis tool, DropTrack, to track droplets in microfluidic experiments. DropTrack analyzes input videos, extracts droplets' trajectories, and infers other observables of interest, such as droplet numbers. Training an object detector network for droplet recognition with manually annotated images is a labor-intensive task and a persistent bottleneck. This work partly resolves this problem by training object detector networks (YOLOv5) with hybrid datasets containing real and synthetic images. We present an analysis of a double emulsion experiment as a case study to measure DropTrack's performance. For our test case, the YOLO networks trained with 60% synthetic images show similar performance in droplet counting as with the one trained using 100% real images, meanwhile saving the image annotation work by 60%. DropTrack's performance is measured in terms of mean average precision (mAP), mean square error in counting the droplets, and inference speed. The fastest configuration of DropTrack runs inference at about 30 frames per second, well within the standards for real-time image analysis.


翻译:作为数据分析工具,深心神经网络正在迅速出现,这往往超过了复杂的微氟化物系统中使用的常规技术。微氟化物实验经常希望进行的一项基本分析是计数和跟踪滴子。具体地说,当滴子在紧凑包装的配置中移动时,在密集乳胶中跟踪滴子是具有挑战性的。有时,即使对于人类观察者来说,这些稠密集群中的单个滴子也很难解决。这里,两个基于深层次学习的天体探测尖端算法(YOLOO)和对象跟踪(DeepSOORT)被合并成一个单一的图像分析工具(DroppTrack,以跟踪微氟化物实验中的滴滴子。DropptTrack 分析输入录录影带、提取滴滴子的轨迹,以及推断其他感兴趣的观察点,例如滴数。训练的物体探测器网络通过手动附加附加说明的图象来识别滴子,这是一项劳动密集型任务和持续的瓶颈。这项工作部分通过培训天体降速计算网络(YOLOVOvreal lial laction laction laction laction laction laction laction) ex laction a stal ex laction a ex ex ex ex laction a ex ex ex laction laction ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex laction acudrutal laction laction laction laction laction laction ex ex ex ex laction ex ex ex ex laction laction laction a laction a laction a ex laction exal exal exal exal exal laction lactional lactional laction lactional lactional laction laction laction laction laction a laction a laction a laction a ex ex ex ex ex exal lactional lactional laction a laction laction ex lactional laction

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
17+阅读 · 2021年3月29日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员