Learning high-level causal representations together with a causal model from unstructured low-level data such as pixels is impossible from observational data alone. We prove under mild assumptions that this representation is however identifiable in a weakly supervised setting. This requires a dataset with paired samples before and after random, unknown interventions, but no further labels. We then introduce implicit latent causal models, variational autoencoders that represent causal variables and causal structure without having to optimize an explicit discrete graph structure. On simple image data, including a novel dataset of simulated robotic manipulation, we demonstrate that such models can reliably identify the causal structure and disentangle causal variables.
翻译:光靠观测数据是不可能从像素这样的非结构化低层次数据中找到一个因果模型,学习高层次的因果表述,以及从像素等非结构化的低层次数据中获得的因果模型。我们根据温和的假设证明,这种表述在监督不力的环境中是可以识别的。这要求在随机、未知的干预之前和之后用对称样本建立数据集,但没有进一步的标签。然后我们引入隐含的潜在因果模型、变式自动编码模型,这些模型代表因果变数和因果结构,而不必优化清晰的离散图形结构。关于简单图像数据,包括模拟机器人操纵的新数据集,我们证明这些模型可以可靠地识别因果结构和分解的因果变量。