Diffusion models have recently outperformed alternative approaches to model the distribution of natural images, such as GANs. Such diffusion models allow for deterministic sampling via the probability flow ODE, giving rise to a latent space and an encoder map. While having important practical applications, such as estimation of the likelihood, the theoretical properties of this map are not yet fully understood. In the present work, we partially address this question for the popular case of the VP SDE (DDPM) approach. We show that, perhaps surprisingly, the DDPM encoder map coincides with the optimal transport map for common distributions; we support this claim theoretically and by extensive numerical experiments.
翻译:最近,传播模型在模拟诸如GANs等自然图像的分布方面,取得了优于其他方法的效果。这种扩散模型允许通过概率流的 ODE 进行确定性取样,从而产生潜在的空间和编码器地图。虽然该地图具有重要的实际应用,例如可能性估计,但该地图的理论属性尚未完全理解。在目前的工作中,我们部分地讨论了VP SDE (DPM) 方法这一流行案例的问题。我们表明,也许令人惊讶的是,DDPM 编码器地图与通用分布的最佳运输地图相吻合;我们从理论上和广泛的数字实验中支持这一主张。