Given a high-dimensional covariate matrix and a response vector, ridge-regularized sparse linear regression selects a subset of features that explains the relationship between covariates and the response in an interpretable manner. To select the sparsity and robustness of linear regressors, techniques like k-fold cross-validation are commonly used for hyperparameter tuning. However, cross-validation substantially increases the computational cost of sparse regression as it requires solving many mixed-integer optimization problems (MIOs). Additionally, validation metrics often serve as noisy estimators of test set errors, with different hyperparameter combinations leading to models with different noise levels. Therefore, optimizing over these metrics is vulnerable to out-of-sample disappointment, especially in underdetermined settings. To improve upon this state of affairs, we make two key contributions. First, motivated by the generalization theory literature, we propose selecting hyperparameters that minimize a weighted sum of a cross-validation metric and a model's output stability, thus reducing the risk of poor out-of-sample performance. Second, we leverage ideas from the mixed-integer optimization literature to obtain computationally tractable relaxations of k-fold cross-validation metrics and the output stability of regressors, facilitating hyperparameter selection after solving fewer MIOs. These relaxations result in an efficient cyclic coordinate descent scheme, achieving lower validation errors than via traditional methods such as grid search. On synthetic datasets, our confidence adjustment procedure improves out-of-sample performance by 2%-5% compared to minimizing the k-fold error alone. On 13 real-world datasets, our confidence adjustment procedure reduces test set error by 2%, on average.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年11月12日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员