This paper discusses a nonparametric approach to link regression aiming at predicting a mean outcome at a link, i.e., a pair of nodes, based on currently observed data comprising covariates at nodes and outcomes at links. The variance decay rates of nonparametric link regression estimates are demonstrated to depend on covariate designs; namely, whether the covariate design is random or fixed. This covariate design-dependent nature of variance is observed in nonparametric link regression but not in conventional nonparametric regression.
翻译:本文讨论一种将回归联系起来的非参数方法,目的是根据目前观察到的由节点和链接结果共同变量组成的数据,预测在链接(即两个节点)上的平均结果。非参数链接回归估计的差异衰减率显示取决于共变量设计;即共变量设计是随机的还是固定的。在非参数链接回归中观察到这种差异的共变量性质,但传统的非参数回归中则没有观察到这种差异。