HDR reconstruction is an important task in computer vision with many industrial needs. The traditional approaches merge multiple exposure shots to generate HDRs that correspond to the physical quantity of illuminance of the scene. However, the tedious capturing process makes such multi-shot approaches inconvenient in practice. In contrast, recent single-shot methods predict a visually appealing HDR from a single LDR image through deep learning. But it is not clear whether the previously mentioned physical properties would still hold, without training the network to explicitly model them. In this paper, we introduce the physical illuminance constraints to our single-shot HDR reconstruction framework, with a focus on spherical panoramas. By the proposed physical regularization, our method can generate HDRs which are not only visually appealing but also physically plausible. For evaluation, we collect a large dataset of LDR and HDR images with ground truth illuminance measures. Extensive experiments show that our HDR images not only maintain high visual quality but also top all baseline methods in illuminance prediction accuracy.


翻译:重塑《人类发展报告》是计算机视野的重要任务,有许多工业需求。传统方法结合了多种曝光镜头,产生符合现场实际亮度的《人类发展报告》。然而,这种乏味的捕捉过程使得这种多镜头的做法在实践中不方便。相比之下,最近的单发方法通过深思熟虑,从一个LDR图像中预测了具有视觉吸引力的《人类发展报告》。但还不清楚上述物理特性是否仍然有效,没有培训网络来明确模型。在本文中,我们为我们单发的《人类发展报告》重建框架引入了物理亮度限制,重点是球形全景。根据拟议的物理规范,我们的方法可以产生不仅具有视觉吸引力而且实际可信的《人类发展报告》。关于评价,我们收集了大量LDR和《人类发展报告》图像的数据集,并用地面的真相亮度衡量尺度。广泛的实验表明,我们的《人类发展报告》图像不仅保持高视觉质量,而且还在光照预测准确性的所有基线方法之上。

0
下载
关闭预览

相关内容

【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2018年3月30日
Arxiv
7+阅读 · 2018年1月21日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员