A backdoor attack allows a malicious user to manipulate the environment or corrupt the training data, thus inserting a backdoor into the trained agent. Such attacks compromise the RL system's reliability, leading to potentially catastrophic results in various key fields. In contrast, relatively limited research has investigated effective defenses against backdoor attacks in RL. This paper proposes the Recovery Triggered States (RTS) method, a novel approach that effectively protects the victim agents from backdoor attacks. RTS involves building a surrogate network to approximate the dynamics model. Developers can then recover the environment from the triggered state to a clean state, thereby preventing attackers from activating backdoors hidden in the agent by presenting the trigger. When training the surrogate to predict states, we incorporate agent action information to reduce the discrepancy between the actions taken by the agent on predicted states and the actions taken on real states. RTS is the first approach to defend against backdoor attacks in a single-agent setting. Our results show that using RTS, the cumulative reward only decreased by 1.41% under the backdoor attack.


翻译:后门攻击允许恶意用户操纵环境或破坏训练数据,从而向受训代理中插入后门。此类攻击会危及RL系统的可靠性,可能导致各个重要领域出现潜在灾难性后果。相比之下,对于防御RL中的后门攻击,相对较少的研究探讨了有效的防御方法。本文提出了一种新颖的方法——恢复触发状态(RTS),有效保护受害代理免受后门攻击。RTS 包括构建替代网络以近似环境动态模型。开发人员可以从触发状态恢复环境到清洁状态,从而防止攻击者通过触发将后门激活在代理中。训练替代模型以预测状态时,我们使用代理的行动信息,以降低代理在预测状态上所采取行动和在真实状态上所采取行动之间的差异。RTS 是第一种在单一代理设置中防御后门攻击的方法。我们的实验结果表明,在后门攻击下,使用 RTS,累计奖励仅下降了 1.41%。

0
下载
关闭预览

相关内容

CVPR2022 | 医学图像分析中基于频率注入的后门攻击
专知会员服务
20+阅读 · 2022年7月31日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
53+阅读 · 2020年9月7日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
CVPR2022 | 医学图像分析中基于频率注入的后门攻击
专知会员服务
20+阅读 · 2022年7月31日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
53+阅读 · 2020年9月7日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员