We make the split of the integral fractional Laplacian as $(-\Delta)^s u=(-\Delta)(-\Delta)^{s-1}u$, where $s\in(0,\frac{1}{2})\cup(\frac{1}{2},1)$. Based on this splitting, we respectively discretize the one- and two-dimensional integral fractional Laplacian with the inhomogeneous Dirichlet boundary condition and give the corresponding truncation errors with the help of the interpolation estimate. Moreover, the suitable corrections are proposed to guarantee the convergence in solving the inhomogeneous fractional Dirichlet problem and an $\mathcal{O}(h^{1+\alpha-2s})$ convergence rate is obtained when the solution $u\in C^{1,\alpha}(\bar{\Omega}^{\delta}_{n})$, where $n$ is the dimension of the space, $\alpha\in(\max(0,2s-1),1]$, $\delta$ is a fixed positive constant, and $h$ denotes mesh size. Finally, the performed numerical experiments confirm the theoretical results.


翻译:基于这一分割,我们分别将一元和二元分解成(- Delta)%s u=(-\ Delta) (-\ Delta) @s-1}u=( ) $( 0,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

元强化学习综述及前沿进展
专知会员服务
61+阅读 · 2021年1月31日
专知会员服务
29+阅读 · 2020年12月14日
【ICML2020】持续终身学习的神经主题建模
专知会员服务
37+阅读 · 2020年6月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月19日
VIP会员
相关VIP内容
元强化学习综述及前沿进展
专知会员服务
61+阅读 · 2021年1月31日
专知会员服务
29+阅读 · 2020年12月14日
【ICML2020】持续终身学习的神经主题建模
专知会员服务
37+阅读 · 2020年6月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Top
微信扫码咨询专知VIP会员