We propose and study a maximum likelihood estimator of stochastic frontier models with endogeneity in cross-section data when the composite error term may be correlated with inputs and environmental variables. Our framework is a generalization of the normal half-normal stochastic frontier model with endogeneity. We derive the likelihood function in closed form using three fundamental assumptions: the existence of control functions that fully capture the dependence between regressors and unobservables; the conditional independence of the two error components given the control functions; and the conditional distribution of the stochastic inefficiency term given the control functions being a folded normal distribution. We also provide a Battese-Coelli estimator of technical efficiency. Our estimator is computationally fast and easy to implement. We study some of its asymptotic properties, and we showcase its finite sample behavior in Monte-Carlo simulations and an empirical application to farmers in Nepal.
翻译:我们提议并研究一个最大可能性的随机边界模型估计,在综合误差术语可能与输入和环境变量相关的情况下,分流数据中带有内分泌性的内分泌性;我们的框架是将正常的半正常随机边界模型与内分泌性通用;我们利用三个基本假设以封闭形式得出这种可能性功能:存在控制功能,充分反映递减者和不可观察者之间的依赖性;根据控制功能,两个误差组成部分有条件独立;由于控制功能是折叠的正常分布,因此随机低效术语的有条件分布;我们还提供一个技术效率的巴特特斯-科埃利估计仪;我们的估测仪是计算迅速和易于执行的;我们研究其某些非随机性特性,并在蒙特卡洛模拟中向尼泊尔农民展示其有限的抽样行为和实证应用。