Autonomous ground vehicles (AGVs) are receiving increasing attention, and the motion planning and control problem for these vehicles has become a hot research topic. In real applications such as material handling, an AGV is subject to large uncertainties and its motion planning and control become challenging. In this paper, we investigate this problem by proposing a hierarchical control scheme, which is integrated by a model predictive control (MPC) based path planning and trajectory tracking control at the high level, and a reduced-order extended state observer (RESO) based dynamic control at the low level. The control at the high level consists of an MPC-based improved path planner, a velocity planner, and an MPC-based tracking controller. Both the path planning and trajectory tracking control problems are formulated under an MPC framework. The control at the low level employs the idea of active disturbance rejection control (ADRC). The uncertainties are estimated via a RESO and then compensated in the control in real-time. We show that, for the first-order uncertain AGV dynamic model, the RESO-based control only needs to know the control direction. Finally, simulations and experiments on an AGV with different payloads are conducted. The results illustrate that the proposed hierarchical control scheme achieves satisfactory motion planning and control performance with large uncertainties.


翻译:在材料处理等实际应用中,AGV面临巨大的不确定性,其动作规划和控制也具有挑战性。在本文件中,我们通过提出一个等级控制计划来调查这一问题,该计划由基于模型的预测控制(MPC)的高水平路径规划和轨迹跟踪控制(MPC)和基于低水平的递减级扩展国家观察员(RESO)的动态控制(RESO)进行整合。高层控制由基于MPC的改进路径规划器、速度规划器和基于MPC的跟踪控制器组成。路径规划和轨迹跟踪控制问题都是在MPC的框架内制定的。低级别的控制采用了主动扰动拒绝控制(ADRC)的想法。不确定性是通过RESO估计的,然后通过实时控制进行补偿。我们表明,对于一级不确定的AGV动态模式,RESO的监控只需要了解控制方向。最后,对AGV的模拟和实验与基于不同级别规划的动态控制计划都以不同的级别进行。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员