Since convolutional neural networks (ConvNets) can easily memorize noisy labels, which are ubiquitous in visual classification tasks, it has been a great challenge to train ConvNets against them robustly. Various solutions, e.g., sample selection, label correction, and robustifying loss functions, have been proposed for this challenge, and most of them stick to the end-to-end training of the representation (feature extractor) and classifier. In this paper, by a deep rethinking and careful re-examining on learning behaviors of the representation and classifier, we discover that the representation is much more fragile in the presence of noisy labels than the classifier. Thus, we are motivated to design a new method, i.e., REED, to leverage above discoveries to learn from noisy labels robustly. The proposed method contains three stages, i.e., obtaining the representation by self-supervised learning without any labels, transferring the noisy label learning problem into a semisupervised one by the classifier directly and reliably trained with noisy labels, and joint semi-supervised retraining of both the representation and classifier. Extensive experiments are performed on both synthetic and real benchmark datasets. Results demonstrate that the proposed method can beat the state-of-the-art ones by a large margin, especially under high noise level.


翻译:由于混凝土神经网络(Conval neural networks (ConvNets)可以很容易地记住噪音标签,这些标签在视觉分类任务中无处不在,因此,对ConvNets进行有力的培训是一项巨大的挑战。 各种解决方案,例如抽样选择、标签校正和强力化损失功能,都是为了应对这一挑战而提出的各种解决方案,其中多数都坚持对代表(性能提取器)和分类器进行端到端培训。 在本文中,通过对代表和分类师的学习行为进行深刻的重新思考和仔细的重新审视,我们发现,在出现噪音标签时,对ConvonNets进行的培训比分类员要脆弱得多。 因此,我们有志于设计一种新的方法,即REED,利用超前的发现,从噪音标签中强有力地学习。 提议的方法包括三个阶段,即通过无任何标签的自我监督学习获得代表,将噪音标签学习问题转移到一个半超强的标签,通过直接和可靠培训的分类师直接和可靠的标签,我们发现,在噪音标签上的代表比重的等级的标签更脆弱得多。 联合的合成的高级实验,在大规模的大规模数据上进行联合的大规模的模拟,可以展示。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
53+阅读 · 2019年12月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
53+阅读 · 2019年12月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员