Cell segmentation and tracking allow us to extract a plethora of cell attributes from bacterial time-lapse cell movies, thus promoting computational modeling and simulation of biological processes down to the single-cell level. However, to analyze successfully complex cell movies, imaging multiple interacting bacterial clones as they grow and merge to generate overcrowded bacterial communities with thousands of cells in the field of view, segmentation results should be near perfect to warrant good tracking results. We introduce here a fully automated closed-loop bio-inspired computational strategy that exploits prior knowledge about the expected structure of a colony's lineage tree to locate and correct segmentation errors in analyzed movie frames. We show that this correction strategy is effective, resulting in improved cell tracking and consequently trustworthy deep colony lineage trees. Our image analysis approach has the unique capability to keep tracking cells even after clonal subpopulations merge in the movie. This enables the reconstruction of the complete Forest of Lineage Trees (FLT) representation of evolving multi-clonal bacterial communities. Moreover, the percentage of valid cell trajectories extracted from the image analysis almost doubles after segmentation correction. This plethora of trustworthy data extracted from a complex cell movie analysis enables single-cell analytics as a tool for addressing compelling questions for human health, such as understanding the role of single-cell stochasticity in antibiotics resistance without losing site of the inter-cellular interactions and microenvironment effects that may shape it.


翻译:细胞分离和跟踪让我们能够从细菌时间折叠细胞电影中提取过多的细胞属性,从而将生物过程的计算模型和模拟模拟推到单细胞水平。然而,为了成功地分析复杂的细胞电影,随着细胞的生长和合并成多相互作用的细菌克隆体,随着细胞的生长和合并而成成,产生拥挤的细菌群落,在视觉领域有数千个细胞,分解结果应接近完美,以获得良好的跟踪结果。我们在这里引入一个完全自动化的封闭式闭路生物激励计算战略,利用以前对殖民地线条树预期结构的了解,在分析的电影框中定位和纠正分解错误。我们表明,这一修正战略是有效的,导致改进细胞跟踪,从而导致值得信赖的深聚地线条线条线条线条线。这样可以重建整个线条树森林的多克隆细菌群落。此外,从图像分析中提取的有效细胞轨迹轨迹的百分点比例,在分解后几乎翻倍的分解析法中,使得一个可靠的单一细胞结构分析成为一个可靠的分析工具,用以解析点,从而解解解析结果。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
100+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
7+阅读 · 2018年11月27日
Arxiv
11+阅读 · 2018年5月13日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
100+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员