Dynamic Bayesian networks have been well explored in the literature as discrete-time models: however, their continuous-time extensions have seen comparatively little attention. In this paper, we propose the first constraint-based algorithm for learning the structure of continuous-time Bayesian networks. We discuss the different statistical tests and the underlying hypotheses used by our proposal to establish conditional independence. Furthermore, we analyze and discuss the computational complexity of the best and worst cases for the proposed algorithm. Finally, we validate its performance using synthetic data, and we discuss its strengths and limitations comparing it with the score-based structure learning algorithm from Nodelman et al. (2003). We find the latter to be more accurate in learning networks with binary variables, while our constraint-based approach is more accurate with variables assuming more than two values. Numerical experiments confirm that score-based and constraint-based algorithms are comparable in terms of computation time.


翻译:文献中作为离散时间模型很好地探索了动态贝叶斯网络:然而,它们的连续时间扩展相对而言很少引起注意。在本文中,我们提出了第一个用于学习连续时间贝叶斯网络结构的基于约束的算法。我们讨论了不同的统计测试和我们提出的建立有条件独立的建议所使用的基本假设。此外,我们分析和讨论拟议算法的最佳和最坏案例的计算复杂性。最后,我们利用合成数据验证了它的性能,我们讨论了它的长处和局限性,将其与诺德尔曼等人(2003年)的基于分数的结构学习算法进行比较。我们发现后者在使用二进制变量的学习网络中更为准确,而我们基于约束的方法则更精确,变量假设两个以上的数值。数字实验证实,基于分数和基于约束的算法在计算时间方面是可比的。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Optimal Rates for Learning Hidden Tree Structures
Arxiv
0+阅读 · 2021年3月31日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员