Many natural and engineered systems can be modeled as discrete state Markov processes. Often, only a subset of states are directly observable. Inferring the conditional probability that a system occupies a particular hidden state, given the partial observation, is a problem with broad application. In this paper, we introduce a continuous-time formulation of the sum-product algorithm, which is a well-known discrete-time method for finding the hidden states' conditional probabilities, given a set of finite, discrete-time observations. From our new formulation, we can explicitly solve for the conditional probability of occupying any state, given the transition rates and observations within a finite time window. We apply our algorithm to a realistic model of the cystic fibrosis transmembrane conductance regulator (CFTR) protein for exact inference of the conditional occupancy probability, given a finite time series of partial observations.
翻译:许多自然和工程系统可以作为离散状态的Markov 过程模型来建模。通常,只有一组国家可以直接观察。根据部分观察,推断一个系统占据特定隐藏状态的有条件概率是一个广泛应用的问题。在本文中,我们引入了对总产品算法的连续时间配制,这是一个众所周知的离散时间方法,用于根据一组有限、离散时间的观察,寻找隐藏状态的有条件概率。从我们的新配方中,我们可以明确解决在一定时间窗口内的过渡率和观察中占据任何国家的有条件概率。我们用我们的算法对一个现实的模型,即细胞纤维纤维化交融调节器(FCTR)蛋白进行精确推导出有条件占用概率的精确推论,因为部分观察的时间序列是有限的。