Differentiable architecture search (DARTS) has significantly promoted the development of NAS techniques because of its high search efficiency and effectiveness but suffers from performance collapse. In this paper, we make efforts to alleviate the performance collapse problem for DARTS from two aspects. First, we investigate the expressive power of the supernet in DARTS and then derive a new setup of DARTS paradigm with only training BatchNorm. Second, we theoretically find that random features dilute the auxiliary connection role of skip-connection in supernet optimization and enable search algorithm focus on fairer operation selection, thereby solving the performance collapse problem. We instantiate DARTS and PC-DARTS with random features to build an improved version for each named RF-DARTS and RF-PCDARTS respectively. Experimental results show that RF-DARTS obtains \textbf{94.36\%} test accuracy on CIFAR-10 (which is the nearest optimal result in NAS-Bench-201), and achieves the newest state-of-the-art top-1 test error of \textbf{24.0\%} on ImageNet when transferring from CIFAR-10. Moreover, RF-DARTS performs robustly across three datasets (CIFAR-10, CIFAR-100, and SVHN) and four search spaces (S1-S4). Besides, RF-PCDARTS achieves even better results on ImageNet, that is, \textbf{23.9\%} top-1 and \textbf{7.1\%} top-5 test error, surpassing representative methods like single-path, training-free, and partial-channel paradigms directly searched on ImageNet.


翻译:不同的建筑搜索( DARTS) 因其高搜索效率和效能,大大促进了NAS 技术的发展。 在本文中, 我们努力从两个方面缓解 DARTS 的性能崩溃问题。 首先, 我们调查DARTS 中超级网的显示力, 然后在培训BatchNorm 的情况下推出一个新的 DARTS 范式。 第二, 我们理论上发现随机性能淡化了超级网络优化中的跳接连接的辅助连接作用, 并使得搜索算法侧重于更公平的操作选择, 从而解决性能崩溃问题。 我们即时化 DARTS 和 PC- DARTS 随机地为 DARTS 分别建立一个改进的版本。 实验结果显示, RF- DARS 获得了 CARFAR 10 (这是最接近的NAS- Bench- Bench 201 最优化的结果), 并且实现了最新的一级一级测试错误, 一级S- DARS 1, 上一级S 3级S- RFS 的测试结果。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月1日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
13+阅读 · 2019年11月14日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员