In this paper, we are interested in algorithms that take in input an arbitrary graph $G$, and that enumerate in output all the (inclusion-wise) maximal "subgraphs" of $G$ which fulfil a given property $\Pi$. All over this paper, we study several different properties $\Pi$, and the notion of subgraph under consideration (induced or not) will vary from a result to another. More precisely, we present efficient algorithms to list all maximal split subgraphs, sub-cographs and some subclasses of cographs of a given input graph. All the algorithms presented here run in polynomial delay, and moreover for split graphs it only requires polynomial space. In order to develop an algorithm for maximal split (edge-)subgraphs, we establish a bijection between the maximal split subgraphs and the maximal independent sets of an auxiliary graph. For cographs and some subclasses , the algorithms rely on a framework recently introduced by Conte & Uno called Proximity Search. Finally we consider the extension problem, which consists in deciding if there exists a maximal induced subgraph satisfying a property $\Pi$ that contains a set of prescribed vertices and that avoids another set of vertices. We show that this problem is NP-complete for every "interesting" hereditary property $\Pi$. We extend the hardness result to some specific edge version of the extension problem.
翻译:在本文中, 我们感兴趣的是输入任意图形$G$的算法, 并在输出中列出所有( 包含的) 最大“ Subgraphs ” 最大“ subgraph ”, 满足给定属性$\ Pi$ 。 在本文中, 我们研究不同的属性 $\ Pi$, 考虑的( 引起或不引起 ) 子graph 概念会因结果而异。 更准确地说, 我们提出高效的算法, 列出所有最大分割子图、 子图表和某个特定输入图形的cograph 。 这里展示的所有最大“ sublogs” 的“ subbblogs” 都以多元延迟的方式运行, 此外, 对于分裂图形只需要多数值空间。 为了开发一个最大分割( ge- sub) 子参数的算法, 在最大分割子图和辅助图形的最大独立组之间, 我们发现一个框架, 由Conte & Uno- Procientyal $ 硬性搜索。 最后, 我们考虑一个最小值的扩展值的扩展结果, 将显示一个特定属性设置。</s>