Quantum logic aims to capture essential quantum mechanical structure in order-theoretic terms. The Achilles' heel of quantum logic is the absence of a canonical description of composite systems, given descriptions of their components. We introduce a framework in which order-theoretic structure comes with a primitive composition operation. The order is extracted from a generalisation of C*-algebra that applies to arbitrary dagger symmetric monoidal categories, which also provide the composition operation. In fact, our construction is entirely compositional, without any additional assumptions on limits or enrichment. Interpreted in the category of finite-dimensional Hilbert spaces, it yields the projection lattices of arbitrary finite-dimensional C*-algebras. Interestingly, there are models that falsify standardly assumed correspondences, most notably the correspondence between noncommutativity of the algebra and nondistributivity of the order.


翻译:量子逻辑旨在从顺序理论术语中捕捉基本量子机械结构。 量子逻辑的脚跟是缺乏对复合系统的明性描述, 给出了对合成系统的描述。 我们引入了一个结构, 秩序理论结构随着原始的构成操作而出现。 命令来自适用于任意的匕首对称一分子类别的C*- 升数的概括, 也提供构成操作 。 事实上, 我们的构造完全是构成性的, 没有额外的限制或浓缩假设 。 它在有限维度的希尔伯特空间类别中被解释, 产生任意的有限维C* 升数的投影层。 有趣的是, 有一些模型可以伪造标准假设的通信, 最明显的是代数的非对称性与秩序的不归属性之间的对应性 。

0
下载
关闭预览

相关内容

【CVPR2020】视觉推理-可微自适应计算时间
专知会员服务
13+阅读 · 2020年4月28日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Logic Rules Powered Knowledge Graph Embedding
Arxiv
7+阅读 · 2019年3月9日
Arxiv
3+阅读 · 2018年10月11日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
5+阅读 · 2017年12月29日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员