Quantum logic aims to capture essential quantum mechanical structure in order-theoretic terms. The Achilles' heel of quantum logic is the absence of a canonical description of composite systems, given descriptions of their components. We introduce a framework in which order-theoretic structure comes with a primitive composition operation. The order is extracted from a generalisation of C*-algebra that applies to arbitrary dagger symmetric monoidal categories, which also provide the composition operation. In fact, our construction is entirely compositional, without any additional assumptions on limits or enrichment. Interpreted in the category of finite-dimensional Hilbert spaces, it yields the projection lattices of arbitrary finite-dimensional C*-algebras. Interestingly, there are models that falsify standardly assumed correspondences, most notably the correspondence between noncommutativity of the algebra and nondistributivity of the order.
翻译:量子逻辑旨在从顺序理论术语中捕捉基本量子机械结构。 量子逻辑的脚跟是缺乏对复合系统的明性描述, 给出了对合成系统的描述。 我们引入了一个结构, 秩序理论结构随着原始的构成操作而出现。 命令来自适用于任意的匕首对称一分子类别的C*- 升数的概括, 也提供构成操作 。 事实上, 我们的构造完全是构成性的, 没有额外的限制或浓缩假设 。 它在有限维度的希尔伯特空间类别中被解释, 产生任意的有限维C* 升数的投影层。 有趣的是, 有一些模型可以伪造标准假设的通信, 最明显的是代数的非对称性与秩序的不归属性之间的对应性 。