Algorithmic rankers have a profound impact on our increasingly data-driven society. From leisurely activities like the movies that we watch, the restaurants that we patronize; to highly consequential decisions, like making educational and occupational choices or getting hired by companies -- these are all driven by sophisticated yet mostly inaccessible rankers. A small change to how these algorithms process the rankees (i.e., the data items that are ranked) can have profound consequences. For example, a change in rankings can lead to deterioration of the prestige of a university or have drastic consequences on a job candidate who missed out being in the list of the preferred top-k for an organization. This paper is a call to action to the human-centered data science research community to develop principled methods, measures, and metrics for studying the interactions among the socio-technical context of use, technological innovations, and the resulting consequences of algorithmic rankings on multiple stakeholders. Given the spate of new legislations on algorithmic accountability, it is imperative that researchers from social science, human-computer interaction, and data science work in unison for demystifying how rankings are produced, who has agency to change them, and what metrics of socio-technical impact one must use for informing the context of use.
翻译:升降等级者对我们日益数据驱动的社会有着深刻的影响。 从我们所看的电影等休闲活动,我们所赞助的餐厅;到诸如教育和职业选择或被公司雇用等具有高度重大意义的决策,这些决策都是由精密但大多无法进入的排名者驱动的。这些算法如何处理排名者(即排名中的数据项目)会产生深远的后果。例如,排名的变化可能导致大学声望的下降,或对未被列入一个组织首选最高等级名单的求职者产生严重的后果。本文呼吁以人为中心的数据科学研究界采取行动,制定原则性的方法、措施和衡量标准,用于研究使用、技术创新的社会-技术环境之间的相互作用,以及算法排名对多个利益攸关方产生的后果。例如,由于关于算法问责的新法律过于繁多,社会科学研究人员、人-计算机互动和数据科学工作必须一致,以一致的方式说明排名是如何产生的,谁必须利用机构来改变社会-技术的影响,以及什么是衡量尺度的。