With electric power systems becoming more compact and increasingly powerful, the relevance of thermal stress especially during overload operation is expected to increase ceaselessly. Whenever critical temperatures cannot be measured economically on a sensor base, a thermal model lends itself to estimate those unknown quantities. Thermal models for electric power systems are usually required to be both, real-time capable and of high estimation accuracy. Moreover, ease of implementation and time to production play an increasingly important role. In this work, the thermal neural network (TNN) is introduced, which unifies both, consolidated knowledge in the form of heat-transfer-based lumped-parameter models, and data-driven nonlinear function approximation with supervised machine learning. A quasi-linear parameter-varying system is identified solely from empirical data, where relationships between scheduling variables and system matrices are inferred statistically and automatically. At the same time, a TNN has physically interpretable states through its state-space representation, is end-to-end trainable -- similar to deep learning models -- with automatic differentiation, and requires no material, geometry, nor expert knowledge for its design. Experiments on an electric motor data set show that a TNN achieves higher temperature estimation accuracies than previous white-/grey- or black-box models with a mean squared error of $3.18~\text{K}^2$ and a worst-case error of $5.84~\text{K}$ at 64 model parameters.


翻译:随着电力系统变得更加紧凑和越来越强大,热应力,特别是在超负荷操作期间,热应力的相关性预计将不断增强。当无法在传感器基数上以经济方式测量临界温度时,热模型就能够估计这些未知数量。电力系统的热模型通常需要既具有实时能力,又具有高估计精确度。此外,随着电力系统的安装和生产时间的便利性,其作用也越来越重要。在这一工作中,热神经网络(TNN)的引入使二者统一起来,以基于热传输的包皮参数模型为形式的综合知识,以及数据驱动的非线性功能与受监督的机器学习相近。一个准线性参数分布式系统仅从经验数据中确定,其中对列表变量和系统矩阵之间的关系进行统计性和自动推算。与此同时,TNNN具备了通过其状态空间代表的物理解释状态,是端对端到端的训练模式 -- 与深层次学习模式类似 -- 自动区分,并且不需要材料、几何测量或专家知识来设计它。一个由数据驱动的非线性非线性功能,而由受监督的机器学习。一个由经验驱动的非线性参数转换的系统的系统系统系统系统系统系统系统系统系统系统系统系统系统系统系统进行。在5美元的实验数据基点上,其前的实验显示,其最差的温度的温度/平方的温度/平方的温度模型比基平方的模型在前的模型和正方差的温度上,比前的模型的温度/平方值为最差。

0
下载
关闭预览

相关内容

【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
14+阅读 · 2019年5月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年5月21日
Arxiv
6+阅读 · 2020年10月8日
Learning to Importance Sample in Primary Sample Space
Arxiv
9+阅读 · 2018年5月24日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
已删除
将门创投
14+阅读 · 2019年5月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Arxiv
0+阅读 · 2021年5月21日
Arxiv
6+阅读 · 2020年10月8日
Learning to Importance Sample in Primary Sample Space
Arxiv
9+阅读 · 2018年5月24日
Arxiv
4+阅读 · 2018年4月30日
Top
微信扫码咨询专知VIP会员