This paper introduces a novel quantum embedding search algorithm (QES, pronounced as "quest"), enabling search for optimal quantum embedding design for a specific dataset of interest. First, we establish the connection between the structures of quantum embedding and the representations of directed multi-graphs, enabling a well-defined search space. Second, we instigate the entanglement level to reduce the cardinality of the search space to a feasible size for practical implementations. Finally, we mitigate the cost of evaluating the true loss function by using surrogate models via sequential model-based optimization. We demonstrate the feasibility of our proposed approach on synthesis and Iris datasets, which empirically shows that found quantum embedding architecture by QES outperforms manual designs whereas achieving comparable performance to classical machine learning models.


翻译:本文介绍一种新的量子嵌入搜索算法(QES, 以“ 遗赠 ” 命名), 从而能够搜索用于特定关注数据集的最佳量子嵌入设计。 首先, 我们建立量子嵌入结构与定向多面图的表达方式之间的联系, 从而可以有一个定义明确的搜索空间。 第二, 我们鼓励纠缠层, 将搜索空间的基点缩小到可行的大小, 以便实际执行。 最后, 我们通过按顺序使用模型优化的代用模型来降低评估真正损失功能的成本。 我们展示了我们所提议的合成和Iris数据集方法的可行性, 其实验性地显示, QES 的量子嵌入结构比人工设计更符合质量要求, 而能取得与经典机器学习模型的可比性能 。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
VALSE Webinar 19-05期 自动机器学习 AutoML
VALSE
8+阅读 · 2019年2月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
VALSE Webinar 19-05期 自动机器学习 AutoML
VALSE
8+阅读 · 2019年2月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员