In this paper we propose a method for the approximation of high-dimensional functions over finite intervals with respect to complete orthonormal systems of polynomials. An important tool for this is the multivariate classical analysis of variance (ANOVA) decomposition. For functions with a low-dimensional structure, i.e., a low superposition dimension, we are able to achieve a reconstruction from scattered data and simultaneously understand relationships between different variables.
翻译:在本文中,我们建议了一种方法,用于对多元金属的完整正正态系统在一定的间隔内近似高维功能。其中一个重要的工具是对差异分解进行多变经典分析(ANOVA),对于低维结构的功能,即低叠加度维度,我们可以从分散的数据中实现重建,同时理解不同变量之间的关系。