In this paper we propose a method for the approximation of high-dimensional functions over finite intervals with respect to complete orthonormal systems of polynomials. An important tool for this is the multivariate classical analysis of variance (ANOVA) decomposition. For functions with a low-dimensional structure, i.e., a low superposition dimension, we are able to achieve a reconstruction from scattered data and simultaneously understand relationships between different variables.


翻译:在本文中,我们建议了一种方法,用于对多元金属的完整正正态系统在一定的间隔内近似高维功能。其中一个重要的工具是对差异分解进行多变经典分析(ANOVA),对于低维结构的功能,即低叠加度维度,我们可以从分散的数据中实现重建,同时理解不同变量之间的关系。

0
下载
关闭预览

相关内容

专知会员服务
91+阅读 · 2021年6月3日
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员