Randomized iterative algorithms for solving a factorized linear system, $\mathbf A\mathbf B\mathbf x=\mathbf b$ with $\mathbf A\in{\mathbb{R}}^{m\times \ell}$, $\mathbf B\in{\mathbb{R}}^{\ell\times n}$, and $\mathbf b\in{\mathbb{R}}^m$, have recently been proposed. They take advantage of the factorized form and avoid forming the matrix $\mathbf C=\mathbf A\mathbf B$ explicitly. However, they can only find the minimum norm (least squares) solution. In contrast, the regularized randomized Kaczmarz (RRK) algorithm can find solutions with certain structures from consistent linear systems. In this work, by combining the randomized Kaczmarz algorithm or the randomized Gauss--Seidel algorithm with the RRK algorithm, we propose two novel regularized randomized iterative algorithms to find (least squares) solutions with certain structures of $\mathbf A\mathbf B\mathbf x=\mathbf b$. We prove linear convergence of the new algorithms. Computed examples are given to illustrate that the new algorithms can find sparse (least squares) solutions of $\mathbf A\mathbf B\mathbf x=\mathbf b$ and can be better than the existing randomized iterative algorithms for the corresponding full linear system $\mathbf C\mathbf x=\mathbf b$ with $\mathbf C=\mathbf A\mathbf B$.
翻译:用于解决一个要素化线性系统的随机迭代算法 $\ mathbf A\ mathbf B\ mathbf x\ mathbf x\ mathbf x\ mathbf b$; 但是, 它们只能找到最起码的规范( lmathbb{R\m\ time}$; $\mathbfBin\mathb{R ⁇ ell\timen} $; 以及$\mathbbbbb b\ fmef f}$; 最近还提出了用于解决一个要素化线性线性系统, 它们利用系数化的Kaczmarz 算法, 或以正统化的Gaus-Seidel算法 和 RKIRK 算法 $\mab C_mathralb\\\ xmathralbralb 的正统代算法 。