A wave view of the universe is proposed in which each natural phenomenon is equipped with its own unique natural viewing lens. A self-sameness modeling principle and its systematic application in Fourier-Laplace transform space is proposed as a novel, universal discrete modeling paradigm for advection-diffusion-reaction equations (ADREs) across non-integer derivatives, time scales, and wave spectral signatures. Its implementation is a novel exact spectral derivative discretization finite difference method (ESDDFD), a way for crafting wave viewing lenses by obtaining discrete wave models from ADRE models. The template for building these lenses come in the form of natural derivative representations obtained from the wave signature probability distribution function and its harmonic oscillation in FL transform space; use of the ESDDFD method in the discrete numerical modeling of wave equations requires no a-priori theory of any mathematical derivative. A major mathematical consequence of this viewpoint is that all notions of the mathematical integer or non-integer derivatives have representation as limits of such natural derivative representations; this and other consequences are discussed and a discretization of a simple integer derivative diffusion-reaction equation is presented to illustrate the method. The resulting view lenses, in the form of ESDDFD models, work well in detecting both local and non-local Debye or Kohlrausch-Williams-Watts exponential patterns; only Brownian motion and sub-diffusion are discussed in the present article.
翻译:对宇宙提出一个波形视图,其中每个自然现象都配有其自身独特的自然观察镜片。在Fleier-Laplace变换空间中,提出了自我模拟原则及其系统应用,作为非内插衍生物、时间尺度和波光谱签名之间的对映-扩散-反振动方程式(ADREs)的新颖的、普遍的离散建模模式。它的实施是一种新型的精确光谱衍生离散有限差异法(ESDDDFD),这是通过从ADRE模型中获取离散波形模型来绘制波形透视镜的一种方法。建立这些镜片的模板以来自波形信号概率分布功能及其在FL变换空间中相对调振动的调和振动等方程式形式的形式出现。在波形变异方程式的离异数字模型中使用ESDDFD方法不需要任何数学衍生物的优先理论。这个观点的主要数学后果是,通过从数学整形或非内振动派衍生物衍生物模型作为这种自然衍生物展示的界限;这个模型和其他结果模型的形式是用自然衍生物表示的自然衍生物图解解的模型。