Stochastic gradient descent (SGD) is one of the most popular algorithms in modern machine learning. The noise encountered in these applications is different from that in many theoretical analyses of stochastic gradient algorithms. In this article, we discuss some of the common properties of energy landscapes and stochastic noise encountered in machine learning problems, and how they affect SGD-based optimization. In particular, we show that the learning rate in SGD with machine learning noise can be chosen to be small, but uniformly positive for all times if the energy landscape resembles that of overparametrized deep learning problems. If the objective function satisfies a Lojasiewicz inequality, SGD converges to the global minimum exponentially fast, and even for functions which may have local minima, we establish almost sure convergence to the global minimum at an exponential rate from any finite energy initialization. The assumptions that we make in this result concern the behavior where the objective function is either small or large and the nature of the gradient noise, but the energy landscape is fairly unconstrained on the domain where the objective function takes values in an intermediate regime.


翻译:在现代机器学习中最受欢迎的算法之一。 这些应用中遇到的噪音与许多随机梯度算法的理论分析不同。 在本篇文章中,我们讨论了在机器学习问题中遇到的能源景观和随机噪声的一些共同特性,以及它们如何影响基于SGD的优化。特别是,我们表明,SGD中机器学习噪音的学习率可以被选为小的,但如果能源景观类似于过度平衡的深层学习问题,则在任何时候都具有统一的积极性。如果客观功能满足了Lojasiewicz的不平等,SGD会快速地聚集到全球最低值,甚至对于可能具有本地微量值的功能,我们几乎可以确定与全球最低值的趋同程度,从任何有限的能源初始化中以指数速度计算。我们由此得出的假设涉及目标功能大小和易变音性质的行为,但是在客观函数在中间系统中占据价值的领域,能源景观相当松散。

0
下载
关闭预览

相关内容

随机梯度下降,按照数据生成分布抽取m个样本,通过计算他们梯度的平均值来更新梯度。
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员