We consider increasingly complex models of matrix denoising and dictionary learning in the Bayes-optimal setting, in the challenging regime where the matrices to infer have a rank growing linearly with the system size. This is in contrast with most existing literature concerned with the low-rank (i.e., constant-rank) regime. We first consider a class of rotationally invariant matrix denoising problems whose mutual information and minimum mean-square error are computable using standard techniques from random matrix theory. Next, we analyze the more challenging models of dictionary learning. To do so we introduce a novel combination of the replica method from statistical mechanics together with random matrix theory, coined spectral replica method. It allows us to conjecture variational formulas for the mutual information between hidden representations and the noisy data as well as for the overlaps quantifying the optimal reconstruction error. The proposed methods reduce the number of degrees of freedom from $\Theta(N^2)$ (matrix entries) to $\Theta(N)$ (eigenvalues or singular values), and yield Coulomb gas representations of the mutual information which are reminiscent of matrix models in physics. The main ingredients are the use of HarishChandra-Itzykson-Zuber spherical integrals combined with a new replica symmetric decoupling ansatz at the level of the probability distributions of eigenvalues (or singular values) of certain overlap matrices.
翻译:我们考虑在Bayes-optimal环境中,在具有挑战性的体系中,矩阵脱色和字典学习的模型日益复杂,在这种体系中,用于推断的矩阵具有随着系统规模的线性增长的等级,这与大多数与低级别(即常态)制度有关的现有文献形成对照。我们首先考虑的是,在使用随机矩阵理论的标准技术对相互信息和最小平均方差差错进行可比较的轮换性矩阵脱色问题类别。接着,我们分析更具有挑战性的词典学习模型。为了这样做,我们将统计结构的复制方法与随机矩阵理论(生成的光谱复制方法)的新组合起来。这使我们可以对隐藏的表达式和杂乱数据之间的相互信息以及用以对最佳重建错误进行量化的重叠的变式公式进行推断。提议的方法将自由度从$>Theta(N)$(基数)减少到$\Theta(基数)至$(基值或奇值),并用库伦基值的模型的复制法质气体图解剖面图,在中间的模型中,将共同的焦基质基质的基质的基质的基质矩阵的模型用于。