This paper is concerned with multi-modal data fusion (MMDF) under unexpected modality failures in nonlinear non-Gaussian dynamic processes. An efficient framework to tackle this problem is proposed. In particular, a notion termed modality "\emph{usefulness}", which takes a value of 1 or 0, is used for indicating whether the observation of this modality is useful or not. For $n$ modalities involved, $2^n$ combinations of their "\emph{usefulness}" values exist. Each combination defines one hypothetical model of the true data generative process. Then the problem of concern is formalized as a task of nonlinear non-Gaussian state filtering under model uncertainty, which is addressed by a dynamic model averaging (DMA) based particle filter (PF) algorithm. This DMA algorithm employs $2^n$ models, while all models share the same state-transition function and a unique set of particle values. That makes the computational complexity of this algorithm only slightly larger than a single model based PF algorithm, especially for scenarios in which $n$ is small. Experimental results show that the proposed solution outperforms remarkably state-of-the-art methods. Code and data are available at https://github.com/robinlau1981/fusion.
翻译:本文涉及在非线性非Gausian动态进程中出现意外模式失败的多模式数据聚合(MMDF)问题。 提出了解决这一问题的有效框架。 特别是, 一种名为“ emph{ usefility} ” 的模式, 其值为1 或 0, 用于表明对这个模式的观察是否有用。 对于所涉及的模式, 存在2美元, 其“ emph{ usefility}” 值的组合。 每个组合都定义了真实数据基因化进程中的一种假设模型。 然后, 将关注问题正式确定为非线性非Gausian 国家过滤在模型不确定性下的任务, 由基于平均( DMA) 的粒子过滤算法处理。 DMA 算法使用2美元模型, 而所有模型都具有相同的状态过渡功能和独特的粒子值组。 这使得这一算法的计算复杂性仅略高于单一模型的PFFS算法, 特别是对于美元为小的假想。 实验结果显示, 拟议的解决方案已经超越了 MAB19/ cod- stated- pro/ data- pro/ dromagistrovol- pasionalds。