Motivated by an imaging proteomics study for Alzheimer's disease (AD), in this article, we propose a mediation analysis approach with high-dimensional exposures and high-dimensional mediators to integrate data collected from multiple platforms. The proposed method combines principal component analysis with penalized least squares estimation for a set of linear structural equation models. The former reduces the dimensionality and produces uncorrelated linear combinations of the exposure variables, whereas the latter achieves simultaneous path selection and effect estimation while allowing the mediators to be correlated. Applying the method to the AD data identifies numerous interesting protein peptides, brain regions, and protein-structure-memory paths, which are in accordance with and also supplement existing findings of AD research. Additional simulations further demonstrate the effective empirical performance of the method.
翻译:根据对阿尔茨海默氏病的成像蛋白质组学研究(AD),在本篇文章中,我们提出一种调解分析方法,与高维接触和高维调解员结合从多个平台收集的数据。拟议方法将主要组成部分分析与一套线性结构方程模型的受罚最低方位估计结合起来。前者减少了接触变量的维度,产生了与接触变量不相干线性组合,而后者实现了同时选择路径和估计影响,同时使调解人能够相互关联。应用这一方法对AD数据进行应用,确定了无数有趣的蛋白质浸泡物、大脑区域和蛋白结构模拟路径,这些都符合并补充了AD研究的现有结果。其他模拟进一步展示了该方法的有效经验性表现。