In this paper, we propose a novel end-to-end neural architecture for ranking candidate answers, that adapts a hierarchical recurrent neural network and a latent topic clustering module. With our proposed model, a text is encoded to a vector representation from an word-level to a chunk-level to effectively capture the entire meaning. In particular, by adapting the hierarchical structure, our model shows very small performance degradations in longer text comprehension while other state-of-the-art recurrent neural network models suffer from it. Additionally, the latent topic clustering module extracts semantic information from target samples. This clustering module is useful for any text related tasks by allowing each data sample to find its nearest topic cluster, thus helping the neural network model analyze the entire data. We evaluate our models on the Ubuntu Dialogue Corpus and consumer electronic domain question answering dataset, which is related to Samsung products. The proposed model shows state-of-the-art results for ranking question-answer pairs.
翻译:在本文中,我们提出一个新的端到端神经结构,用于对候选答案进行排序,这种结构将调整一个等级性常态神经网络和一个潜在主题组合模块。用我们提议的模型,将文本编码成从一个字层到块层的矢量代表,以有效捕捉整个含义。特别是,通过调整等级结构,我们的模型在较长的文字理解中显示非常小的性能退化,而其他最先进的经常性神经网络模型则因此受到影响。此外,潜在主题组合模块从目标样本中提取语义信息。这个组合模块有助于任何与文本有关的任务,允许每个数据样本找到其最近的专题组合,从而帮助神经网络模型分析整个数据。我们评估了我们关于Ubuntu对话公司和消费者电子域回答数据集的模型,这与三星产品有关。拟议模型显示了排名问答配对的最新艺术结果。